
�������� �	
����
���	 ��	�
 ��� ��	 �������� �	��

Touby Drew
Medtronic, Inc.

7000 Central Avenue NE; MS RCE290
Minneapolis, MN, 55432-3576
touby.drew@medtronic.com

Maria Gini
University of Minnesota

4-192 EE/CSci, 200 Union St SE
Minneapolis, MN 55455
gini@cs.umn.edu

ABSTRACT
Issue tracking is an essential part of regulated software devel-
opment where it is typically supported by software systems
which are complex and not easily customizable. We propose
a meta-software agent that senses what windows and wid-
gets are in focus by the user and leverages this awareness
to provide support. The user is given ways of making and
recalling annotations appropriate for the context. By ob-
serving users in action the agent creates models which can
then be used to predict and suggest next steps. This pa-
per describes an early prototype of this approach built as
a proof of concept. Preliminary results and directions for
future work are outlined.

Categories and Subject Descriptors
I.2,11 [Distributed Artificial Intelligence]: Intelligent
Agents

General Terms
Design, Algorithms, Human Factors, Architecture

Keywords
Meta-software Agent, Regulated Software Engineering, Is-
sue Tracking Support, Applications

1. INTRODUCTION
Issue tracking is an important aspect of large scale, reg-

ulated, software engineering domains and is typically sup-
ported by a complex system of programs and users which
work together to document and manage change of process,
products and other essential artifacts.
This paper focuses primarily on a novel approach to ex-

tending an issue tracking system (ITS) implementation used
by hundreds of employees in a division of the world’s largest
implantable medical device manufacturer. Important con-
straints of this domain include (1) restrictions on changing
the existing qualified system, (2) the need to support and
follow users as they interact with the system through differ-
ent programs and technologies, (3) the need to support users

Cite as: MAITH: a Meta-software Agent for Issue Tracking Help,
T. Drew and M. Gini, Proc. of 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010), van der Hoek,
Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto,
Canada, pp.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

without having prior knowledge of their goals or requiring a
predictive action-sequence model of their current task.

Within these constraints we propose a Meta-software Agent
for Issue Tracking Help (MAITH) which interacts with the
existing issue tracking systems as meta-software, performs
feature-based recognition of the current virtual context, and
provides context relevant user support. MAITH has been
created as a proof of concept. It currently exists as a pro-
totype for exposing various technical, architectural, and us-
ability challenges as well as ultimately taking the first steps
in applying a meta-software agent approach to supporting
work within Medtronic Neuromodulation as described in this
paper. Based on the work completed so far, MAITH has
good potential to be tested with a small group of workers
and, depending on its success and the degree of interest,
refined and deployed to a much larger number of users.

The manner in which MAITH supports its complex ap-
plication domain is different from previous approaches to
integrating agents with user interfaces (UI) (see Section 6).
MAITH reduces significantly the requirements on the target
applications because it determines the context using two fea-
tures, i.e. the window and widget currently in focus, which
are provided by a layer of software below the applications
themselves. MAITH supports polymorphic and configurable
context modeling, which enables generalization by changing
the type of context descriptor, and addition of new types of
descriptors. MAITH also supports a multimodal UI, which
allows users multiple ways to interact with the agent, such
as using it for unanticipated advice, quick control, or intense
use. Finally, MAITH provides support in different types of
applications, such as those where sequential information is
a reliable predictor of the next user context as well as ap-
plications where the sequence varies widely but the current
state alone is a good predictor of appropriate help.

More specifically, key contributions of this work include:

1. proof of concept design of a meta-software agent for
issue tracking systems

2. a novel suggestion that widget and window in focus
are the two key features for meta-context observation
and user support;

3. a prototype implementation with

(a) support for monitoring and transitioning between
active elements in Web, application, file system,
Eclipse, and other software;

(b) constant user observation with reasonable perfor-
mance;

(c) a sophisticated multi-modal UI for direct two-
way user interaction, notification of context rel-

1755

1755-1762



evant information, and configuration and interac-
tion with model and data;

(d) context-sensitive annotations by users using con-
text descriptors that enable polymorphic context
matching;

(e) a method for context prediction that uses the win-
dow and widget in focus.

4. a unique approach to supporting issue tracking in a
regulated engineering domain.

In the remainder of this paper, we present (1) background
on the regulated issue tracking domain and motivation for
supporting it, (2) a conceptual introduction to MAITH, (3)
the architecture and design of MAITH, (4) examples of ex-
pected usage and results, (5) discussion including relation to
existing work, and finally (6) conclusions from our prelimi-
nary experience and potential future directions.

2. APPLICATION DOMAIN BACKGROUND
Teams working to develop and maintain software and other

artifacts relevant to implantable medical devices work with
numerous and changing tools, processes and artifacts that
are evolved and maintained to support sophisticated and
critical systems. These teams and systems operate and evolve
over decades of development under competitive, regulatory,
and other business pressures. As a result, the efforts re-
quired to master and maintain them by dynamic teams of
engineers are daunting and expensive [19, 8].
The Production Neuromodulation Issue Tracking System

(PNITS) currently used by Medtronic Neuromodulation, Inc.
is no exception. PNITS is based on a heavily customized im-
plementation of the well known IBM Rational ClearQuest [1]
system. The system is accessed primarily through Web,
Eclipse, and native Windows-based clients for a variety of
purposes. These include capturing, communicating, and
adding clarity to the process being followed and the status of
key aspects of the work such as review and work completion.
Issues are typically related to projects, users, other issues,
classifications and other tools (e.g. files cannot be promoted
into the formal integration/build environment unless they
are associated with an issue which in turn is associated with
a relevant project and in the resolving state).
After initial peer reviews and before final closure review,

a separate team of quality assurance engineers regularly re-
view and reject issues, sometimes several times and long
after the related work has been dormant. Despite various
meetings, discussions, supporting plans, processes, work in-
structions and required trainings, metrics collected on one
large team showed that its members repeatedly struggled
with the issue tracking system. In the first several months
of their work, more than half of the issues submitted and
peer reviewed were later rejected, many of them multiple
times, often by quality engineers. After more than a year
of experience and several changes to how the issue tracking
system is used by that team, the rejection rate has improved
but not stabilized below 20%. Users, including the software
development function’s leadership, have discussed various
changes to the system itself, but, due to the number and
range of users, effort and complexity involved with mak-
ing and especially qualifying any changes, and the need for
tightly regulated customization and extension of the soft-
ware, this is not a viable option.

3. A LESS DIRECT APPROACH
Domain constraints limit the applicability of more direct

approaches such as altering, extending, or making the PNITS
more customizable. Adding to the complexity is the fact
that several client programs and technologies have to be
supported. The need for an alternative approach seems ap-
parent.

Much of today’s virtual content is ultimately exposed to
human users as part of a dynamic collection of separate win-
dows and widgets, a subset of which may be in focus and re-
ceive input or provide output at any given time. This control
of focus and information exchange is primarily driven and
understood by the user and, to a lesser extent, by the logic of
a particular software program associated with the windows
and widgets in question. In some cases, however, “meta-
software” monitors and interacts with the virtual context,
determining (and/or controlling) what windows and wid-
gets have focus and interacting with them through content
retrieval, mouse and keyboard input. Such meta-software
is often used to carry out scripted or more complex UI au-
tomation for software verification and validation purposes.
In some cases UI behavior can be automatically recorded,
edited, and played back to facilitate verification and valida-
tion activities or within a particular program by an end user
for other reasons.

We propose a meta-software approach to provide support
for PNITS. We want the software to observe the PNITS
clients, much as a user would, while the user interacts with
them. Unlike typical meta-software we want to be able to
watch the user’s context, have some recognition of what is
going on with the issue tracking client, and interact with the
user as an “advisory agent” [14] while refraining from tak-
ing over the user’s role in the issue tracking system. Unlike
macros, verification tools and other nascent meta-software
we want to be able to monitor and recognize the context
across and inside the diverse Windows-native, Web, and
Eclipse client technologies.

Given the complex, varied, and often short or unique in-
teractions that users have with PNITS, the meta-software
should be so loosely coupled as to allow and even encour-
age the user to transition painlessly in and out of related
and unrelated tasks and programs. This suggests that the
Meta-software should act as an Agent for Issue Tracking
Help (MAITH). It should be able to integrate different kinds
of “sensed” inputs including the window and widget in the
user’s focus across programs and technologies and to derive
“features”from that input, to recognize and react to different
contexts described by those features, and so on.

4. BASICS OF MAITH DESIGN
MAITH is architected to monitor the current virtual en-

vironment through virtual sensors, resolve these inputs into
features, use those to identify the current context, and finally
work with its understanding of the current context and user
input to manage and perform actions (see Figure 1). It can,
for example, determine the window and widget currently
in focus, record an annotation associated with this context,
and recall the annotation at some point in the future when
it recognizes the relevant context.

4.1 Monitoring
MAITH relies heavily on two key features which reflect

(1) the currently active window and (2) the currently ac-

1756



Figure 1: Architectural sketch with example classes
and interfaces

tive widget. This avoids over-fitting, and remains perfor-
mant while continuously operating in the background, and
operating much as a user would. These features are sup-
ported primarily by custom virtual sensors based on the UI
Automation framework [11]. These sensors are running in
a separate process, which is essential to avoid threading is-
sues [2]. This approach further supports recognition of when
the web client is in use by observing the active window.
In addition, MAITH needs to generalize this recognition to
deal with different browsers. This is accomplished by using
a more general ContextDescriptor than an exact match on
the active window.
While sufficient to monitor activity within most technolo-

gies, the UI Automation based approach to monitoring the
active widget is not able to function with the complex and
customized web client. To address this, we developed a new
Firefox plugin to monitor, and expose through a telnet in-
terface provided by MozRepl [15], the active widget within
a web application. A FirefoxWatcher was developed and
integrated to supplement the UI Automation sensor input,
allowing details of how the “active widget” is sensed to be
encapsulated under a single feature.

4.2 User Interfaces
MAITH often observes users’ effects on the virtual context

and operates quietly in the background, but it also interacts
directly with users primarily through three different inter-
faces:

1. through a traditional interactive window and tray icon
which receive direct run-time user input,

2. through files for configuration and context related data
management, and finally

3. through unidirectional user notifications of context spe-
cific information.

Users can control what MAITH is doing to support and
consider their actions, how it is using its files, and review
its status primarily by selecting actions from its interactive
window (which they can bring up from its tray icon). Some
users who need to tune or have greater control over the agent
may interact with it by creating or editing files which it
understands, for example as seen in Figure 2 to generalize
when it should recognize (and potentially thus react to) a
certain context by simply removing irrelevant features from
its description and/or using more sophisticated syntax (in
the toy example shown using a more sophisticated context
descriptor type and leaving only the ’ActiveWindow’ fea-
ture). Finally, MAITH notifies the user of context relevant
information through transient messages that are shown and
fade away just above its tray icon (see various figures in the
sections below).

Figure 2: Example of a generalized annotation

4.3 Modeling
As alluded to previously, MAITH is able to describe the

current context and/or recognize when a certain context
descriptor matches the current context using classes which
meet an IContextDescriptor interface. The primary and sim-
plest of these is ContextDescriptor, which maintains a set of
value pairs each containing a feature identifier and a descrip-
tion of that feature’s value. MAITH is able to create models
by creating, retaining, organizing, and associating context
descriptors with themselves and other content based on its
observations and user input.

MAITH can associate context descriptors with user in-
put to form annotations. MAITH allows collections of these
annotations to be saved to files, loaded, manipulated, used
to automatically display the relevant content whenever the
agent observes that the current context matches the context
described in one or more of a set of annotations. For exam-
ple, MAITH allows for a user to provide it with content and
demonstrate the context with which it should be associated
to form an annotation, save the annotation, later load that
and other annotations and have their content automatically
displayed whenever relevant contexts are encountered by the
user.

1757



MAITH is also capable of associating context descriptors
with other context descriptors and other information such as
temporal directionality to form sequential context descrip-
tion chains. For example, MAITH can be asked to train a
model on the set(s) of contexts it observes over one or more
periods of time. Along these lines when a user asks MAITH
to start predicting future contexts (which is described later
in the paper) a running model (basically a circular buffer) of
recent context descriptions is kept and used with each con-
text change to search a previously trained, depth-limited,
probabilistic, trie-variant-based, Markov-chain model to de-
termine and display the most probable next context descrip-
tion. Typically past work in this sort of prediction has fo-
cused on action, language, or audio-visual patterns. The
modeling we use is unique but draws heavily from previ-
ous work in these other areas. The relevant training and
prediction algorithms are similar to algorithms that have
been used for natural language processing and compression,
and our implementation is similar in many regards to the
implementation of Prediction by Partial Match ’Method C’
(PPM-C) described by Begleiter [3]. 1

5. MAITH IN ACTION
The sections below describe four different examples of

MAITH in action supporting PNITS.

5.1 The Right Client
With MAITH running on a user’s computer and monitor-

ing which window2 is active, it determines when one of the
Web, Eclipse, or (native-)Windows PNITS clients are being
used and provides client-appropriate support.
MAITH should discourage users from using the Windows

client because although it appears to function reasonably
well, some idiosyncrasies (like not scrolling on one screen
when it should) have lead to mistakes and significant rework.
To train MAITH to prevent users from using this client, one
user selects the Windows client on her machine and then
asks MAITH to make a context appropriate note that this
program should not be used and that one of the other por-
tals should be used instead. MAITH then saves and the
user generalizes the context-associated-annotation (NOTE)
so that it should be displayed anytime a window with that
title is opened. This and other annotations saved may be
loaded automatically or manually, merged and displayed in
later use. Figure 3 shows a sequence from an example of the
process above.
The Web client and the Eclipse client each have different

advantages and disadvantages and should be recognized by
an agent monitoring a user’s virtual environment in much
the same way the Windows client is recognized. The Web

1Differences include total count caching, option for simulta-
neous use during training, application to contexts descrip-
tors rather than symbols, and exception for certain training
conditions.
2Here the term ’window’ is used loosely. While MAITH
does indeed recognize the windows-native or Eclipse client
by their window, this does not make sense for the web client.
For example, we certainly would not want to recognize any
Mozilla Firefox window as the web client, but would want
to recognize when the active tab of Mozilla Firefox has
loaded the web client. Furthermore, it is best to also recog-
nize shortcuts to the Windows client from the “Start”menu
to provide a relevant warning even before the program is
launched.

Figure 3: Example of a Windows client warning an-
notation sequence

client, being browser based, has the complication of not
always having the same window (e.g. it could have been
opened in Firefox as opposed to Internet Explorer), but
this can be readily generalized using more flexible matching
rules. When the Web or Eclipse client is recognized, MAITH
can automatically or upon request offer the user additional
support actions that are appropriate to the context, such as
information resources, annotation, and identification of the
widget which is typically accessed after the currently focused
one.For example, if an issue is too large to be opened in the
web client or the user goes to modify the ReqPro tab, which
is only partially supported in the web client, MAITH refers
the user to the Eclipse client (see Figure 4).

Figure 4: User being referred from web client to
Eclipse client

Though MAITH clearly must support each of the PNITS
clients, for simplicity we focus the remaining examples on
the Eclipse client.

1758



5.2 Client Interface Annotation
In addition to helping users work with an appropriate

client, the more detailed context within the client can be
annotated and later recognized and supported. In this fash-
ion, one or more users can create, modify, and share a set
of groupware annotations. For example, before using the
PNITS system, new users must all follow the appropriate
process for establishing a connection to the database. MAITH
can be used to guide users through this process by presenting
them with context appropriate instructions and comments,
which MAITH learned from watching and being instructed
by previous users (see Figure 5).

Figure 5: Example of support in establishing new
connections

Figure 6: Example group-specific support for a field

Along these lines, the way a certain group uses PNITS
can be encoded and shared just with that team in a similar
fashion. This is particularly important because of the degree
of complexity of the system and its relationship with other
systems used by that group. Consider as an example a large
team of software engineers with somewhat regular turn-over
but established rules for using PNITS. More specifically, as
shown in Figure 6, although there are numerous “free for-
mat” text fields exposed by the system, the team has cre-
ated specific rules about the format and content of several of

these including the “Headline” field which is used in various
project metrics and work tracking queries.

5.3 Sequences: Suggesting Next Steps
As previously discussed, a software agent can save a de-

scription of the current context and associate that with some
other item, such as annotation to display, or more generally
some action that could be performed in that context. Struc-
tures of context descriptions themselves may also be worth
loading, saving, and organizing for use without associated
actions. For example, sequential chains or traces of con-
text information are a natural way to organize such context
descriptions.

In the previous examples and in its anticipated use, MAITH
training, context recognition, and support is performed with-
out direct consideration of the immediate historic sequence
of the virtual context. This allows MAITH to avoid “the
inability of the ... system to track users when they per-
formed sub-goals, such as navigation, using action sequences
other than those within the script” [4] which would be com-
mon in this domain. However, in certain circumstances, this
sort of sequential information is desirable, and MAITH can
be asked to model observed context sequences and/or pre-
dict/suggest next steps having observed the recent history
or even just the current context.

Although aimed at more physical contexts, Rahlff et al.
describe the use of logging context timelines in Context
Trace Technology (CTT) to provide a means for context
matching/clustering within a body of context information
to find “nearby” contexts which might provide personal (e.g.
“when was I here last?”) or possibly even social (e.g. “what
do people usually do here?”) context-aware support [17].

To explore a more sophisticated structure of organizing
context descriptions (using counting trie based Markov chain
structures) we examined the feasibility of extending MAITH
to support learning the probability of context transitions
by observing user behavior and predicting future contexts
based on available current context timeline. This subjec-
tively proved successful in predicting the next context (e.g.
active window and focused widget) while remaining robust
to variable length (or no) matching history.

To understand how this is applied in supporting the PNITS
system, consider a scenario in which MAITH has previously
observed and modeled the creation of new issues and is cur-
rently observing a user attempting to create a new issue.
The new user could ask MAITH to begin suggesting the
next action based on the model learned from its previous
experience. The user could then attempt to complete the
issue and look to MAITH for guidance with the assumption
that the model in use may reflect sequences similar to the
ones the user should now produce. Perhaps, more specif-
ically the user needs to complete the drop down fields on
the current tab but doesn’t know where to start, how they
are sequenced (they are interdependent), or what options
to consider in them. As seen in Figure 7, MAITH can be
helpful in cases like this; here first suggesting what to select
and then where to go next by describing the next screen and
widget in a note to the user.

5.4 Issue Tracking System Files
PNITS supports export and import of various query and

data files. When a large number of these files are present
they can be difficult to find, their content and use can be

1759



Figure 7: MAITH using Markov Model to suggest
selection (in 1) and next field (in 2)

difficult to remember and slow to explore. Though tradi-
tional approaches to documenting such things exist, such
as additional readme files, emails, properties of individual
files, descriptive naming, and organizing folders, there is an
opportunity for further improvement. MAITH allows these
files and the folder structures that contain them to be an-
notated (see Figure 8) and otherwise supported 3. Enabling
one user to add a context specific annotation associated to
a certain file or folder on their computer and have it gener-
alized and shared with other users is desirable. This sort of
annotation of items within a Windows Explorer window is in
many ways similar to the annotation of a web or program in-
terface described in the previous sections. As described pre-
viously MAITH associates such file system annotations with
context descriptors that recognize the context regardless of
how the window was opened and can easily be generalized.
For example if deploying a set of shared files MAITH can
recognize when any file (regardless of path) of certain name
is selected. Or, for example, it can recognize all files within
a certain folder or with a certain file ending and describe
that they are queries and how they can be used.

6. RELATED WORK AND DISCUSSION
Most of the research in context-awareness “has focused on

building infrastructures to support programmers in building
applications and on the applications themselves despite the
tremendous value this has in empowering end-users to build
applications” [6]. Some more recent work (for instance, [6,
7, 9, 18]) embodies an emerging trend of allowing end-users

3As an example, sequential support can be used to suggest
the next nested folders to expand based on those most com-
monly used by the user or others in their group depending
on how the model is trained.

Figure 8: MAITH displaying an annotation of the
selected query file

to control how they leverage context-aware support. Dif-
ferences in our approach involve (1) meta-software agents,
(2) support for user involvement in generalization, and (3)
sophisticated support for action control. Our approach is
ultimately consistent with and further supports these goals.

Considering the MAITH prototype and its preliminary
use (see Section 5), it is clear that a meta-software agent
approach to supporting issue tracking systems is promising
and merits further work (See Section 7). Furthermore, there
are some advantages to this over alternate approaches, many
of which are currently being employed without sufficient suc-
cess (see Table 1).

The manner in which MAITH is designed to be meta-
software in that it is only loosely coupled and primarily in-
dependent of the applications it supports, attempting to use
them as a user might, may be important in its future exten-
sion and application.

This includes attempting to use a small number of fea-
tures which are readily visible to and consistent with use of
end-users. While traditional“UI events... (e.g. mouse move-
ments...[and] keyboard presses)...have long been regarded as
a potentially fruitful source of information regarding appli-
cation usage” they are “are typically [so] extremely volumi-
nous and rich in detail” that it is difficult to obtain “a level
of abstraction that is useful” [12]. Our selection of “window
focus events from the UI layer” from the sea of more tradi-
tional UI, temporal, file system, and other potential inputs
is consistent with some recent work in context-based (rather
than content based) information retrieval [10] where widget
focus has also been considered but is confounded by caching.

Our approach also includes leveraging access to monitor
these features and interact with users in a manner that is not
only isolated from the rest of the MAITH architecture, but
common across and outside of what is provided by the appli-
cations themselves. In contrast to previous cross-application
user-support work [7], this means keeping special add-ons or
plug-ins for target applications to a minimum.

In the context of Lieberman’s conceptual framework for
integrating agents with conventional applications, these are
departures in the MAITH approach from traditional lever-
age of recordability (extensive, accessible events/commands)
and/or examinability (exposed data structures, plugin in-
terface or API). These differences reduce the challenges and
limitations related to “cooperation from the target applica-
tions” and the need for parsing, dereferencing, balance of
granularity in the event protocol, dynamic interface negoti-
ation, and so on which limit generality and practicality [13].

Avoiding the need to manipulate widgets, MAITH nearly

1760



Table 1: ITS support approaches

Approach Status with ITS Cons (Re: MAITH)

Meetings In use. Required
and team-specific.

Not in contexta ,
Maintenanceb

1 on 1 support In use as requested. Cost, Availability
Documentation In use. Plans, pro-

cesses, twiki, etc.
Not in context,
Maintenance

Change or Ex-
tend ITS

Rare. Discouraged
except in most es-
sential & common

Slow, Cost, Mainte-
nance, Invasivec

Follow me doc-
umentation [4]

Not attempted. Tech-specificd ,
Sequentiale

(In context)
Annotation
toolsf

Not attempted. Environment / Pro-
gram Specific, No
Sequential Support

Task environ-
ment for sup-
port [7]

Not attempted. Maintenance, Pro-
vides limited sup-
port

MAITH Proof of concept Not applicable
a Not available at the specific times and places where
needed

b Costly to update and recreate for specific groups.
c Requires changes to ITS or its use with significant ripples
into re-qualification, documentation, training, and so on.

d Technology-specific and tightly coupled into the Eclipse
environment (including events, performance specifics such
as quiescence, and so on). Cannot support web client, etc.

e Heavily dependent on sequential information; could not
support more general context annotation as is more
generally desirable in the application. See Section 5.3

f Such as ‘shared annotation’ [5], file system, and
application-focused systems.

eliminates the need for widget understanding and minimizes
concerns about inappropriate automation and the need for
qualification and retraining. MAITH’s provision for complex
action control, directed and passive learning, and basic user
input capabilities further abstract it from the applications
at hand. These aspects of our meta-software approach are
part of what defines MAITH as an agent and allows it to
be more robust to changes, avoid over-fitting, and operate
within domain constraints.

7. FUTURE WORK
There is a wealth of future work which includes testing

with users, group support, and multiple other extensions.
A key next step is putting MAITH in the hands of users.

Practical use will allow for the value of MAITH to be mea-
sured in terms of user perceived value, reduction in mistakes
and rejections, improved consistency, reduced overhead, and
ultimately monetary value to regulated businesses and in-
dustries. Additionally, we hope that broader exposure will
bring back vital feedback that will guide, measure, and mag-
nify the value of this work.
One aspect of MAITH which has been neglected is its po-

tential to be supporting multiple users within a group with
each user having their own agent. The current ability to save
annotations and other information into files that users can

swap and combine allows users to use MAITH collectively.
Recent work “suggests that expertise delivered by social an-
notation mechanisms is helpful to users in learning unfamil-
iar domains” when considering document/content annota-
tion [16] and we believe that this will hold true for more
general (e.g. context, interface, and application) social an-
notation as well. Addressing, considering, and potentially
building into MAITH support for such group collaboration
would be an improvement to the current limited, manual
group support. One potential approach could be to extend
multiple instances of MAITH to collaborate in a distributed
fashion, perhaps leveraging multiagent systems technologies.

With the existing design for MAITH providing for exten-
sion where key interfaces are used (see Figure 1), there is op-
portunity to explore additional implementations of actions,
sensors, features, models, and context descriptors. This
could allow for automated review support, network avail-
ability as part of the context, and various other extensions.

The MAITH architecture also allows for improvements.
For example, after broader user testing, we may find that
while performance issues were not found with MAITH dur-
ing our work, users require an architectural change to pro-
vide them with control over when the agent is sensing their
activity (currently it is always monitoring, but not always
modeling or acting). Perhaps the most important architec-
tural extension would be to allow for plugins (e.g. behind
any or all of the interfaces described previously), which could
facilitate broader user development, allow for easier configu-
ration, and add utility to MAITH as a potential platform for
exploring and applying this sort of approach more broadly.

This work may also be extensible to other domains where
one or more users work in complex, customized, or evolv-
ing virtual environments. As such, because this approach
remains context aware, but generally independent from and
extensible across the different programs, files and technolo-
gies that define this virtual context it could potentially be
applied to allow users to collaborate or be guided through
whatever combination of virtual resources (e.g. files, folders,
etc) and applications which are relevant to their domain.
A particularly interesting area of application might be in
education where students might overlay their virtual envi-
ronment with guidance, annotations or other support from
themselves or others and might allow their teachers to mon-
itor their time spent in and progression through the relevant
environment. Teachers could even look at the quality of their
contributions and their impact in supporting other students
or the context in which specific questions are raised. Per-
haps some aspects of the approach to MAITH could inspire
work on a similar meta-software agent approach to ultra-
general, virtual context sensitive prediction and/or annota-
tion support. Or perhaps in user interface design/revision
with annotation, tracking of use performance metrics, etc.
Within the medical device domain it could be useful in ret-
rospective support (e.g. added to help familiarize future or
released systems engineers with the product or previously
used process and artifacts).

One possible promising direction for additional work in
this area includes not simply supporting binary context match-
ing, but more subtle evaluation of proximity to match, pos-
sibly in terms of number of matching features or more so-
phisticated context description proximity calculation (which
might involve supporting user involvement in defining how to
evaluate proximity for example in weighting criteria, defin-

1761



ing patterns, etc). Considering the possible parallels be-
tween historic context chains and relevant examples pro-
vided more traditionally by mentors underscores the poten-
tial value of Context Trace Technology [17] in helping not
just in simple context-sensitive decision points (as seen in
Section 5), but in more complex tasks such as free form is-
sue description or even other software engineering tasks that
engineers might struggle with. Previous work has shown
that “studying from examples and abstracting them for ap-
plication in a new context is a common way of learning in
programming that has been observed extensively in both
new and experienced programmers” [20] and, intuitively, au-
tomating the process of providing examples and the possi-
bility of quantifying and optimizing their proximity or rele-
vance to the task at hand may be of value.

8. CONCLUSIONS
Issue tracking, and other regulated software development,

is an important and challenging domain which, based on our
preliminary experience with MAITH, appears to naturally
lend itself to a meta-software approach. MAITH has taken
the first step in establishing the concept of meta-software
agents as a viable and valuable approach to issue tracking
support. With a multitude of potential future work, user
testing appears to be a key next step in this direction. Ulti-
mately, MAITH may have the potential to significantly im-
prove the quality and cost of issue tracking thereby improv-
ing productivity, and perhaps even products, which trans-
lates into significant monetary savings. This approach and
the technologies relevant to it merit further evaluation, de-
velopment, and application.

9. REFERENCES
[1] IBM - rational ClearQuest - rational ClearQuest -

software. http://www-
01.ibm.com/software/awdtools/clearquest/.

[2] UI automation threading issues.
http://msdn.microsoft.com/en-
us/library/ms788709.aspx.

[3] R. Begleiter, R. El-Yaniv, and G. Yona. On prediction
using variable order Markov models. Journal of
Artificial Intelligence Research, 22:385–421, 2004.

[4] L. Bergman, V. Castelli, T. Lau, and D. Oblinger.
Docwizards: a system for authoring follow-me
documentation wizards. In Proc. ACM Symposium on
User Interface Software and Technology, pages
191–200, New York, NY, USA, 2005. ACM.

[5] A. J. B. Brush, D. Bargeron, J. Grudin, and
A. Gupta. Notification for shared annotation of digital
documents. In Proc. CHI (Conf. on Human Factors in
Computing Systems), pages 89–96, New York, NY,
USA, 2002. ACM.

[6] A. K. Dey, R. Hamid, C. Beckmann, I. Li, and
D. Hsu. a cappella: programming by demonstration of
context-aware applications. In Proc. CHI (Conf. on
Human Factors in Computing Systems), pages 33–40,
New York, NY, USA, 2004. ACM.

[7] A. N. Dragunov, T. G. Dietterich, K. Johnsrude,
M. McLaughlin, L. Li, and J. L. Herlocker. Tasktracer:
a desktop environment to support multi-tasking
knowledge workers. In Proc. 10th Int’l Conf. on

Intelligent User Interfaces, pages 75–82, New York,
NY, USA, 2005. ACM.

[8] T. Drew and S. Goetz. Vision of the virtual
programmer - steps towards change in instrument
systems for implantable medical devices. In T. F. B.
Filho and H. Gamboa, editors, Proc. Int’l Conf. on
Biomedical Electronics and Devices, volume 1, pages
156–159, Funchal, Madeira, Portugal, January 2008.
INSTICC - Institute for Systems and Technologies of
Information, Control and Communication.

[9] K. Gajos, H. Fox, and H. Shrobe. End user
empowerment in human centered pervasive computing.
In Proc. 1st Int’l Conf. on Pervasive Computing
(Short paper), pages 134–140, Zurich, August 2002.

[10] K. A. Gyllstrom, C. Soules, and A. Veitch.
Confluence: enhancing contextual desktop search. In
Proc. ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 717–718,
New York, NY, USA, 2007. ACM.

[11] R. Haverty. New accessibility model for Microsoft
Windows and cross platform development.
SIGACCESS Access. Comput., 82:11–17, 2005.

[12] D. M. Hilbert and D. F. Redmiles. Extracting
usability information from user interface events. ACM
Comput. Surv., 32(4):384–421, 2000.

[13] H. Lieberman. Integrating user interface agents with
conventional applications. In IUI ’98: Proceedings of
the 3rd international conference on Intelligent user
interfaces, pages 39–46, San Francisco, California,
United States, 1998. ACM.

[14] H. Lieberman and T. Selker. Agents for the user
interface. In J. Bradshaw, editor, Handbook of Agent
Technology. MIT Press, 2003.

[15] M. Mirra. MozRepl | hyperstruct.
http://hyperstruct.net/projects/mozrepl.

[16] L. Nelson, C. Held, P. Pirolli, L. Hong, D. Schiano,
and E. H. Chi. With a little help from my friends:
examining the impact of social annotations in
sensemaking tasks. In Proc. CHI (Conf. on Human
Factors in Computing Systems), pages 1795–1798,
New York, NY, USA, 2009. ACM.

[17] O.-W. Rahlff, R. Kenneth Rolfsen, and J. Herstad.
Using personal traces in context space: Towards
context trace technology. Personal Ubiquitous
Comput., 5(1):50–53, 2001.

[18] T. Sohn and A. Dey. iCAP: an informal tool for
interactive prototyping of context-aware applications.
In Proc. CHI (Conf. on Human Factors in Computing
Systems), pages 974–975, New York, NY, USA, 2003.
ACM.

[19] J. W. Spence. There has to be a better way! In Proc.
Agile Development Conference, pages 272–278,
Washington, DC, USA, 2005. IEEE Computer Society.

[20] D. ČubraniĆ, G. C. Murphy, J. Singer, and K. S.
Booth. Learning from project history: a case study for
software development. In Proc. Conf. on Computer
Supported Cooperative Work, pages 82–91, New York,
NY, USA, 2004. ACM.

1762


